Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Breast Cancer Res ; 26(1): 71, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658999

RESUMO

BACKGROUND: To compare the compartmentalized diffusion-weighted models, intravoxel incoherent motion (IVIM) and restriction spectrum imaging (RSI), in characterizing breast lesions and normal fibroglandular tissue. METHODS: This prospective study enrolled 152 patients with 157 histopathologically verified breast lesions (41 benign and 116 malignant). All patients underwent a full-protocol preoperative breast MRI, including a multi-b-value DWI sequence. The diffusion parameters derived from the mono-exponential model (ADC), IVIM model (Dt, Dp, f), and RSI model (C1, C2, C3, C1C2, F1, F2, F3, F1F2) were quantitatively measured and then compared among malignant lesions, benign lesions and normal fibroglandular tissues using Kruskal-Wallis test. The Mann-Whitney U-test was used for the pairwise comparisons. Diagnostic models were built by logistic regression analysis. The ROC analysis was performed using five-fold cross-validation and the mean AUC values were calculated and compared to evaluate the discriminative ability of each parameter or model. RESULTS: Almost all quantitative diffusion parameters showed significant differences in distinguishing malignant breast lesions from both benign lesions (other than C2) and normal fibroglandular tissue (all parameters) (all P < 0.0167). In terms of the comparisons of benign lesions and normal fibroglandular tissues, the parameters derived from IVIM (Dp, f) and RSI (C1, C2, C1C2, F1, F2, F3) showed significant differences (all P < 0.005). When using individual parameters, RSI-derived parameters-F1, C1C2, and C2 values yielded the highest AUCs for the comparisons of malignant vs. benign, malignant vs. normal tissue and benign vs. normal tissue (AUCs = 0.871, 0.982, and 0.863, respectively). Furthermore, the combined diagnostic model (IVIM + RSI) exhibited the highest diagnostic efficacy for the pairwise discriminations (AUCs = 0.893, 0.991, and 0.928, respectively). CONCLUSIONS: Quantitative parameters derived from the three-compartment RSI model have great promise as imaging indicators for the differential diagnosis of breast lesions compared with the bi-exponential IVIM model. Additionally, the combined model of IVIM and RSI achieves superior diagnostic performance in characterizing breast lesions.


Assuntos
Neoplasias da Mama , Mama , Imagem de Difusão por Ressonância Magnética , Humanos , Feminino , Imagem de Difusão por Ressonância Magnética/métodos , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico , Pessoa de Meia-Idade , Adulto , Idoso , Mama/diagnóstico por imagem , Mama/patologia , Estudos Prospectivos , Curva ROC , Interpretação de Imagem Assistida por Computador/métodos , Adulto Jovem , Diagnóstico Diferencial
2.
Magn Reson Imaging ; 108: 47-58, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38307375

RESUMO

OBJECTIVE: To compare the diagnostic performance of different mathematical models for DWI and explore whether parameters reflecting spatial and temporal heterogeneity can demonstrate better diagnostic accuracy than the diffusion coefficient parameter in distinguishing benign and malignant breast lesions, using whole-tumor histogram analysis. METHODS: This retrospective study was approved by the institutional ethics committee and included 104 malignant and 42 benign cases. All patients underwent breast magnetic resonance imaging (MRI) with a 3.0 T MR scanner using the simultaneous multi-slice (SMS) readout-segment ed echo-planar imaging (rs-EPI). Histogram metrics of Mono- apparent diffusion coefficient (ADC), CTRW, and FROC-derived parameters were compared between benign and malignant breast lesions, and the diagnostic performance of each diffusion parameter was evaluated. Statistical analysis was performed using Mann-Whitney U test and receiver operating characteristic (ROC) curve. RESULTS: The DFROC-median exhibited the highest AUC for distinguishing benign and malignant breast lesions (AUC = 0.965). The temporal heterogeneity parameter αCTRW-median generated a statistically higher AUC compared to the spatial heterogeneity parameter ßCTRW-median (AUC = 0.850 and 0.741, respectively; p = 0.047). Finally, the combination of median values of CTRW parameters displayed a slightly higher AUC than that of FROC parameters, with no significant difference however (AUC = 0.971 and 0.965, respectively; p = 0.172). CONCLUSIONS: The diffusion coefficient parameter exhibited superior diagnostic performance in distinguishing breast lesions when compared to the temporal and spatial heterogeneity parameters.


Assuntos
Neoplasias da Mama , Imageamento por Ressonância Magnética , Humanos , Feminino , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Mama/diagnóstico por imagem , Mama/patologia , Imagem de Difusão por Ressonância Magnética/métodos , Curva ROC , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia
3.
Front Oncol ; 13: 1139189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37188173

RESUMO

Objective: To investigate the correlations between quantitative diffusion parameters and prognostic factors and molecular subtypes of breast cancer, based on a single fast high-resolution diffusion-weighted imaging (DWI) sequence with mono-exponential (Mono), intravoxel incoherent motion (IVIM), diffusion kurtosis imaging (DKI) models. Materials and Methods: A total of 143 patients with histopathologically verified breast cancer were included in this retrospective study. The multi-model DWI-derived parameters were quantitatively measured, including Mono-ADC, IVIM-D, IVIM-D*, IVIM-f, DKI-Dapp, and DKI-Kapp. In addition, the morphologic characteristics of the lesions (shape, margin, and internal signal characteristics) were visually assessed on DWI images. Next, Kolmogorov-Smirnov test, Mann-Whitney U test, Spearman's rank correlation, logistic regression, receiver operating characteristic (ROC) curve, and Chi-squared test were utilized for statistical evaluations. Results: The histogram metrics of Mono-ADC, IVIM-D, DKI-Dapp, and DKI-Kapp were significantly different between estrogen receptor (ER)-positive vs. ER-negative groups, progesterone receptor (PR)-positive vs. PR-negative groups, Luminal vs. non-Luminal subtypes, and human epidermal receptor factor-2 (HER2)-positive vs. non-HER2-positive subtypes. The histogram metrics of Mono-ADC, DKI-Dapp, and DKI-Kapp were also significantly different between triple-negative (TN) vs. non-TN subtypes. The ROC analysis revealed that the area under the curve considerably improved when the three diffusion models were combined compared with every single model, except for distinguishing lymph node metastasis (LNM) status. For the morphologic characteristics of the tumor, the margin showed substantial differences between ER-positive and ER-negative groups. Conclusions: Quantitative multi-model analysis of DWI showed improved diagnostic performance for determining the prognostic factors and molecular subtypes of breast lesions. The morphologic characteristics obtained from high-resolution DWI can be identifying ER statuses of breast cancer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA